
BONUS CHAPTER 4 Raising Your CSS Game BC1

 Raising Your CSS Game
HTML elements enable web page designers to mark up a document ’ s
structure, but beyond trust and hope, you don ’ t have any control over your
text ’ s appearance. CSS changes that. CSS puts the designer in the driver ’ s seat.

 —HÅKON WIUM LIE

 I designed the chapters in Book 3 of HTML, CSS, & JavaScript All-in-One For Dummies
to give you a top-notch education in the basics of CSS. That education that con-
tinues later in the book with the graduate programs of layout (head over to

Book 5) and animation (which you’ll fi nd in Bonus Chapters 1 through 3 at www.
dummies.com/go/htmlcss&javascriptaiofd). For now, though, I want to send
you to a kind of fi nishing school for CSS, where you learn some amazing — and
amazingly powerful — techniques that you’ll turn to again and again throughout
your (hopefully long and successful) CSS coding career. With the CSS you’re about
to learn, you can o� cially declare yourself to have graduated from being a CSS
amateur to a CSS adept.

 In this chapter, you unearth some true CSS gems in the form of custom properties,
handling text overfl ow, styling images, learning how to hide stuff , sprucing up
your bulleted and numbered lists, and querying the web browser to check whether
it supports particular CSS features.

Bonus Chapter 4

 IN THIS CHAPTER

» Working with custom properties

» Handling text that overfl ows its
container

» Styling images

» Hiding and showing elements

» Styling bulleted and numbered lists

» Running feature queries

BC2 HTML, CSS, & JavaScript All-in-One For Dummies

Easier Coding with Custom Properties
and Variables

One of the hallmarks of good web design is consistency. For example, if your main
page uses a serif typeface for headings and a sans-serif typeface for body text,
then all your other pages should do the same. Thankfully, CSS makes this con-
sistency easy because you can define a rule once in your stylesheet and then use
a selector to apply that rule wherever it’s needed throughout your site. Need to
change that typeface? No problem: Just edit your rule and that change will auto-
matically propagate throughout all the pages that use the stylesheet.

That’s pretty sweet, but it doesn’t solve a major CSS creation and maintenance
problem: having to use a particular property value in multiple declarations
throughout a stylesheet.

Take a peek at the following CSS code (check out bk03ch08/example01.html in this
book’s example files):

main {
 border: 5px outset hsl(6deg, 100%, 94%);
 padding: 1rem;
 text-align: center;
}
h2 {
 text-shadow: 5px 5px hsl(6deg, 100%, 94%);
 margin-top: 1rem;
}
button {
 background-color: hsl(6deg, 100%, 94%);
 box-shadow: 5px 5px hsl(6deg, 100%, 94%);
 border-radius: 10px;
 font-size: 1.5rem;
 margin-top: 1rem;
}

Anything jump out at you? There are actually two things to notice here, one obvi-
ous and the other subtle:

 » The more obvious thing is that the color value hsl(6deg, 100%, 94%) shows
up in four different places. That’s a lot of occurrences in a code snippet that
has only ten declarations.

 » The more subtle thing is that the color value hsl(6deg, 100%, 94%) itself
doesn’t tell you anything about why this color is being used in so many places.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC3

These two points are the bane of CSS developers everywhere. The next couple of
sections unpack why.

The scourge of repeated property values
When you’re adding rules to a website’s stylesheet, do you find yourself repeating
certain property values — particularly colors — over and over again? I thought as
much. Repeating CSS property values sucks the joy out of web design in several
ways:

 » Repeating a value over and over is mind-numbing.

 » If the value is complex, you may have to find the original to remind yourself of
the correct syntax or parameters.

 » Changing the value means running a find-and-replace operation over all your
CSS code.

What drudgery! Wouldn’t it be nice if you had a way to define a value just once and
then somehow tell the browser to use that value wherever you need it?

The scourge of non-semantic values
When you’re reading through your CSS code, coming across a color value such
as hsl(6deg, 100%, 94%) or a length value such a 1.75rem doesn’t tell you why
these particular values are being used. Sure, you could add a comment that says
why a value is being used, but if it’s a value that repeats frequently throughout
your code, you’re just adding to the drudgery.

Forget that! Wouldn’t it be nice if you had a way to somehow give certain property
values a semantic name that tells you instantly the significance of those values?

Welcome to custom properties
and cascading variables
The scourges I outline in the previous two sections are neatly resolved by two
powerful CSS technologies:

 » Provide a value: You can use any name you like (subject to certain restric-
tions, as I describe in the next section) for each custom property, so you’re
free to create semantic, descriptive names.

BC4 HTML, CSS, & JavaScript All-in-One For Dummies

 » Cascading variables: These are property values for which you use a special
CSS function that effectively says, “Hey, you know that custom property I
defined earlier? Yes, that’s the one. Please insert the value of that custom
property here, with thanks.” The “cascading” part of “cascading variable”
means that the custom property value cascades from the parent element it
was defined on; the “variable” part means that the value that gets inserted
varies depending on the value you define in the custom property.

In other words, you can set a particular property value once using the custom
property, and then use that custom property value throughout your stylesheet.
Need to change the value? No problem: Just edit the custom property as needed
and the change automatically propagates down to every cascading variable that
uses the file. The result? Drudgery-free CSS!

Defining custom properties
Okay, I realize that the preceding discussions must feel very abstract, so it’s time
to get real. To define a custom property, begin with two dashes (--) followed
by the name (which can use only letters, numbers, hyphens, or underscores and
can’t start with a digit or hyphen). For example, this declaration defines a custom
property named --accent-color:

--accent-color: hsl(6deg, 100%, 94%);

Next you add your custom property to the element that you want to use as the
ancestor. Remember, the value of the custom property cascades down to every
descendant of whatever element you use. So, for example, if you’re sure that you’ll
use the custom property value only in aside elements, your rule will look like this:

aside {
 --accent-color: hsl(6deg, 100%, 94%);
}

However, custom properties are at their most powerful and useful when they’re
available everywhere in your page. That means you’ll want the top of the HTML
document (that is, the html element) to be the ancestor, and in your CSS, you can
reference that element using the :root pseudo-class:

:root {
 --accent-color: hsl(6deg, 100%, 94%);
}

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC5

Creating a custom property doesn’t do anything on its own because you haven’t
yet applied the custom property value as a variable. That comes next.

Putting custom properties to work
with cascading variables
To use the value of a custom property elsewhere in your CSS, you substitute a
regular property’s value with a cascading variable that holds the value of the cus-
tom property.

You create that variable by using the var() function:

property: var(--custom-property-name [, fallback-value]);

 » property: The name of the CSS property you want to modify.

 » custom-property-name: The name of the custom property you defined
earlier, preceded by the two leading hyphens (--).

 » fallback-value: An optional value that the browser will apply if, for some
reason, it can’t use the custom property (for example, if the custom property
name is misspelled).

For example, recall my --accent-color custom property from the previous
section:

:root {
 --accent-color: hsl(6deg, 100%, 94%);
}

I can now replace each instance of hsl(6deg, 100%, 94%) in my stylesheet
with a cascading variable that specifies the --accent-color property (check out
bk03ch08/example02.html):

main {
 border: 5px outset var(--accent-color);
 padding: 1rem;
 text-align: center;
}
h2 {
 text-shadow: 5px 5px var(--accent-color);
 margin-top: 1rem;
}

BC6 HTML, CSS, & JavaScript All-in-One For Dummies

button {
 background-color: var(--accent-color);
 box-shadow: 5px 5px var(--accent-color);
 border-radius: 10px;
 font-size: 1.5rem;
 margin-top: 1rem;
}

There are two big wins here:

 » To change the color, I need only change the value of the custom property.

 » The code is more understandable because I can now know right away that I’m
applying an accent color to the elements.

My Container Overfloweth:
Handling Text Overflow

By default, CSS is happy to give any element whatever space it needs to contain all
its content. If you don’t set a width or height on the element, the element expands
as needed to accommodate the content: first the element’s width expands until it
reaches the width of its parent element; then the element’s height expands until
there’s enough vertical room to fit everything.

What if you set a width on the element? That’s not a usually problem because CSS
respects your width value and wraps the text at the end of each line. To make
that wrapping happen, CSS looks for so-called soft-wrap opportunities, such as a
space or a hyphen (-). Occasionally, CSS comes across a line that presents no
word-break opportunities. For example, check out the following code (bk03ch08/
example03.html):

HTML:

<h3>Shakespeare Quote of the Day:</h3>
<aside>
 I marvel thy master hath not eaten thee for a word;
for thou art not so long by the head as
honorificabilitudinitatibus: thou art easier
swallowed than a flap-dragon.

—<i>Love's Labour Lost</i>
</aside>

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC7

CSS:

aside {
 border: 1px solid hsl(0, 0%, 30%);
 width: 175px;
}

The aside element has a set width, but the text includes a word that’s longer than
that width, so that line spills out of the aside container, as shown in Figure BC4-1.

Long words are rarely the culprit when it comes to lines spilling out the sides of a
container. A more likely suspect — and the bane of web designers everywhere —
is a long URL that doesn’t include any hyphens.

What if you also set a height on an element? Now CSS has nowhere to expand the
element, so if the content is more than can fit inside the constrained element, the
text will burst out of the bottom of the element. For example, here I’ve adjusted
the preceding code to add a height value to the aside element (bk03ch08/
example04.html):

aside {
 border: 1px solid hsl(0, 0%, 30%);
 height: 175px;
 width: 175px;
}

Figure BC4-2 shows the results.

FIGURE BC4-1:
If CSS can’t wrap
a line, it extends
the line outside

its container.

BC8 HTML, CSS, & JavaScript All-in-One For Dummies

Handling overflow
When text runs outside its parent container, that’s called overflow, and it can cre-
ate all kinds of problems because the overflow usually flows over something else
on the page! Why doesn’t CSS just restrict content to its parent? Because doing so
would mean truncating the content either vertically or horizontally (or both), and
truncating content is a no-no in CSS.

The best solution here is to let the content flow naturally, first by setting the
width large enough to avoid having long words spill out horizontally, and second
by not setting a height on the element.

However, if your page design requires restricting the dimensions of an element,
CSS can put you back in charge of your content with the following properties:

overflow-x: keyword; /* Handles horizontal overflow */
overflow-y: keyword; /* Handles vertical overflow */

 » keyword: You can use one of the following overflow keywords:

• clip: Truncates the content so that it doesn’t extend past the element’s
padding box.

• scroll: Adds a scroll bar to the element. If you’re working with overflow-x,
a horizontal scroll bar appears if you have content that would otherwise
overflow horizontally; if you’re working with overflow-y, a vertical
scroll bar appears if you have content that would otherwise overflow
vertically.

FIGURE BC4-2:
If an element
doesn’t have

enough height, its
text runs out of

the bottom.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC9

• hidden: Truncates the content (as with clip), allows the content to scroll
(as with scroll), but doesn’t display any scroll bars. Yep, this is a seriously
weird behavior! How can you possibly scroll something that has no scroll
bars? One possibility is if the element contains tabbable items, such as
links or elements that have the tabindex= "0" attribute. The user can put
the focus inside the element, tab through the content, and it will scroll, if
needed.

• auto: Lets the browser figure out when to show scroll bars.

• visible: Lets the content overflow out of its container (this is the default
behavior).

You can alternatively use the overflow property to set both horizontal and vertical
overflow keywords simultaneously:

overflow: horizontal-keyword vertical-keyword;

If you provide a single keyword to the overflow property, the browser assigns
that value to both the horizontal and vertical behaviors.

In most situations, it’s best just to use the auto keyword and let the browser
handle things for you (bk03ch08/example05.html):

aside {
 border: 1px solid hsl(0, 0%, 30%);
 height: 175px;
 overflow: auto;
 width: 175px;
}

Figure BC4-3 shows the example elements now with horizontal and vertical
scroll bars.

FIGURE BC4-3:
With overflow:

auto, the
browser figures
out when scroll

bars are required.

BC10 HTML, CSS, & JavaScript All-in-One For Dummies

Allowing words to break willy-nilly
The soft-wrap opportunities (spaces and hyphens) that CSS uses to wrap text in
a container work well most of the time, except when you have a line (such as a
really long URL) that offers no such opportunities. Here’s an example (bk03ch08/
example06.html and Figure BC4-4):

<h3>Shakespeare Quote of the Day:</h3>
<aside>
 I marvel thy master hath not eaten thee for a word;
for thou art not so long by the head as
honorificabilitudinitatibus: thou art easier
swallowed than a flap-dragon.

—<i class="small-title">Love's Labour Lost</i>

 <a href="https://www.gutenberg.org/cache/epub/1774/pg1774.

html">https://www.gutenberg.org/cache/epub/1774/pg1774.
html

</aside>

Rather than use overflow-x to introduce a horizontal scroll bar or (worse) to clip
the too-long text, you can tell CSS to go ahead and break words anywhere that’s
necessary to avoid horizontal overflow. You do that by adding the declaration
overflow-wrap: break-word to your container:

aside {
 border: 1px solid hsl(0, 0%, 30%);

FIGURE BC4-4:
An element with
a couple of lines

that overflow
horizontally.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC11

 height: 175px;
 overflow-wrap: break-word;
 width: 175px;
}

As Figure BC4-5 shows, the browser now wraps the text as needed to prevent
overflow, although without adding any hyphens to indicate where the wrapping
has occurred. Feel free to add the declaration hyphens: auto to fix this.

Handling single-line overflow
Rather than worry about overflow in multiline text, you sometimes have to deal
with overflow in text that consists of just one line, such as a text box. That situa-
tion is the province of the text-overflow property:

text-overflow: keyword;

 » keyword: You can use either of the following keywords:

• clip: Truncates the text so that it doesn’t extend past the element’s
content box.

• ellipsis: Truncates the text within the element’s content box, but also
adds an ellipsis (. . .) to the end of the visible text.

FIGURE BC4-5:
The long lines

now wrap
nicely inside the

container.

BC12 HTML, CSS, & JavaScript All-in-One For Dummies

For this property to work, you also need to include the following two declarations:

overflow: hidden;
white-space: nowrap;

The white-space property determines how CSS handles whitespace. The nowrap
value tells CSS to never wrap the text. Other possible values are pre (preserves all
sequences of whitespace characters and breaks lines at any newline characters
in the text); pre-wrap (same as pre, except lines wrap when they hit the edge of
the containing block); and pre-line (same as pre-wrap, except that sequences of
whitespace characters are not preserved).

Here’s an example (bk03ch08/example07.html):

HTML:

<label for="name">Please type your name:</label>
<div>Welcome,

!</div>

CSS:

span {
 border: 1px solid hsl(0, 0%, 30%);
 display: inline-block;
 overflow: hidden;
 text-overflow: ellipsis;
 white-space: nowrap;
 width: 15rem;
}

Here you have an editable span element prompting the user for their name. You
don’t want text in this element to overflow (overflow: hidden) or wrap (white-
space: nowrap), and you want any truncated overflow to be represented by an
ellipsis (text-overflow: ellipsis). Figure BC4-6 shows how the span looks
when the user enters a name longer than the span width.

FIGURE BC4-6:
Using an ellipsis

(. . .) to represent
truncated text.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC13

Styling Images
Images are a weird part of web development because they’re a hybrid of both
inline and block elements:

 » Images are inline elements in the sense that they’re rendered along with the
text flow.

 » Images are block elements in the sense that you can set the width and
height properties on them.

I think you’ll find that you’ll only rarely want an image to flow along with your
text. Therefore, it’s always a good idea to add the following rule somewhere near
the top of your CSS:

img {
 display: block;
}

The display: block declaration turns all your images into block elements, which
makes them easier to work with.

Setting image sizes
With every tag you include in your page, it’s important to include the width
and height attributes and set these equal to the actual dimensions of the image
file you’re using. Here’s an example:

<img src="images/please-brake-for-snakes.jpg" width="704"
height="1024" alt="">

Setting these attributes isn’t an instruction to the browser to display the image
using those dimensions. Instead, having the width and height enables the browser
to calculate the aspect ratio of the image, which is the ratio of width to height.
Having the aspect ratio allows the browser to set aside the correct amount of space
in your layout based on whatever size you set for the image in your CSS. If you
don’t set the width and height attributes, the browser sets aside no space for the
image, so when it finally loads, your content shifts jarringly to accommodate the
image, which can be very annoying for the user.

BC14 HTML, CSS, & JavaScript All-in-One For Dummies

Near the top of your CSS, besides declaring display: block on the img element,
as I explain in the previous section, you should also set some default width and
height values:

img {
 display: block;
 max-width: 100%;
 height: auto;
}

Setting max-width: 100% means that your images never break out of their parent
containers; and setting height: auto ensures that your images maintain their
original aspect ratio if you change the width.

Fitting and positioning images
When you have an image inside a container, you often want to control how that
image sits inside the container, which means controlling two things:

 » How the image fits within the container’s boundaries.

 » How the image is positioned within the container.

Fitting an image within a container
To determine how the image fits inside the container, use the object-fit
property:

object-fit: keyword;

 » keyword: You can use any of the following keywords:

• contain: Preserves the image aspect ratio while scaling the image until it
reaches the full width or height (whichever happens first) of the containing
element’s content box. If there is still space left in the other dimension, the
browser leaves that space blank.

• cover: Preserves the image aspect ratio while scaling the image until it
covers the full width and height of the element’s content box. If the image
is larger than the element, the browser crops the image to fit.

• fill: Scales the image until it’s the same dimensions as the element’s
content box. If the image has a different aspect ratio than the element, the
image is stretched as needed to fit.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC15

Figure BC4-7 (bk03ch08/example08.html) demonstrates the keywords contain
(left), cover (middle), and fill (right).

Positioning an image within a container
To set an image’s position within a containing element, use the object-position
property:

object-position: x y;

 » x: The horizontal starting position.

 » y: The vertical starting position.

Both x and y can be a keyword (top, right, bottom, left, or center), a per-
centage, or a length value (such as 50px or 5rem). Figure BC4-8 (bk03ch08/
example09.html) tries out a few object-position values.

Applying a filter to an image
One of the more awesome properties you can apply to an image is filter, which
renders the image using one or more special effects, such as blurring the image
or modifying the image colors. Warning! This property is barrel-full-of-monkeys
fun and therefore a serious time waster!

FIGURE BC4-7:
The object-
fit property

in action.

FIGURE BC4-8:
The object-

position
 property at work.

BC16 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s the syntax:

filter: effect(s);

 » effect(s): Use one or more of the following functions:

• blur(radius): Blurs the image based on radius, which is a length value
(but not a percentage). The greater the radius value, the greater the blur.

• brightness(value): Adjusts the image brightness based on value.
Values under 1 darken the image (0 produces black) and values over 1
brighten the image.

• contrast(value): Adjusts the image contrast based on value. Values
under 100% reduce the contrast (0% produces gray) and values over 100%
increase the contrast.

• drop-shadow(x y radius color): Adds a drop-shadow to the image.
The shadow offset is given by x and y, the shadow blur is given by radius
(a length value, such as 5px), and the shadow color is given by color.

• grayscale(value): Adjusts the image grayscale based on value, where
0% leaves the image as is and 100% is completely grayscale.

• hue-rotate(angle): Rotates the image hues around the color wheel by
the number of degrees specified by angle.

• invert(value): Inverts the image colors based on value, where 0% leaves
the image unchanged and 100% is completely inverted.

• opacity(value): Adjusts the image transparency based on value, where
100% is completely opaque and 0% is completely transparent.

• saturate(value): Adjusts the image color saturation based on value,
where values under 100% decrease the saturation (0% is completely
unsaturated) and values over 100% increase the saturation.

• sepia(value): Converts the image colors to sepia based on value, where
0% leaves the image unchanged and 100% is completely sepia.

Figure BC4-9 shows the different filter property values applied to an image
(bk03ch08/example10.html). To apply multiple effects to an image, include the
filter functions you want to use, separating each with a space.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC17

A similar property is backdrop-filter, which, when applied to an element,
applies an effect only to the area that lies behind that element. This property
supports the same effect functions as the filter property. To notice the effect,
be sure to apply some transparency to the element’s background. As I write this,
Safari supports only backdrop filters that use a special -webkit- prefix, so if you
use this effect, you have to write two declarations (bk03ch08/example11.html):

-webkit-backdrop-filter: blur(5px);
backdrop-filter: blur(5px);

Keep an eye on the following Can I Use page to learn when this prefix is no longer
required:

https://caniuse.com/css-backdrop-filter

Hiding (and Showing) Stuff
It may seem like an odd concept, but sometimes you have to hide stuff on your
web page. Here are some example scenarios in which you need to hide one or more
elements:

 » As I discuss in Book 5, Chapter 4, one common strategy for implementing a
responsive layout is to hide some nonessential content for users viewing your
site on a small (usually smartphone-sized) screen.

FIGURE BC4-9:
The filter

 property doing
its thing.

BC18 HTML, CSS, & JavaScript All-in-One For Dummies

 » Another responsive layout technique is to have two versions of, say, a header
element: one for mobile users and one for tablet and desktop users.
Depending on the size of the user’s screen, you hide one version of the
header and display the other.

 » Certain types of interface widgets — such as drop-down menus — require
some content to be hidden until the user performs an action (such as clicking
the menu).

 » You may want an element to start off hidden but then gradually become
visible via animation (refer to Bonus Chapters 1 through 3).

CSS offers three main ways to hide a page element:

 » Remove the element from the page entirely.

 » Make the element invisible.

 » Make the element transparent.

Removing an element from the page
The most common way to hide an element is to include the following declaration
in a rule that targets the element:

display: none;

This declaration removes the element — and its descendants, if it has any —
entirely from the page (technically, it removes the element from the Document
Object Model; refer to Book 4, Chapter 6). From the browser’s perspective, it’s as
if the element doesn’t exist at all! Here’s an example (bk03ch08/example12.html):

HTML:

<div>
 First
</div>
<div>
 Second
</div>
<div class="hide-me">
 Third
</div>

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC19

<div>
 Fourth
</div>

CSS:

.hide-me {
 display: none;
}

This example creates four div elements, one of which has the hide-me class,
which declares display: none on the element. Figure BC4-10 shows that the
third div doesn’t appear on the rendered page.

To return a hidden element to the page, you set display to the element’s intrinsic
type:

display: block | inline-block | inline;

Making an element invisible
Using display: none changes the page layout because the subsequent elements
fill in the space vacated by the missing element. What if you want to hide an ele-
ment without changing the page layout? In that case, you’d declare the following
property on the element:

visibility: hidden;

The browser renders the element’s box but makes everything inside the box invis-
ible. Figure BC4-11 shows a page that uses the identical code from the previous
section, except now the hide-me class sets visibility: hidden on the third div
(bk03ch08/example13.html). The third div is invisible, but the space for its box
remains in the page layout.

To make the element visible again, you use this declaration:

visibility: visible;

FIGURE BC4-10:
The third

div doesn’t
appear on the

rendered page.

BC20 HTML, CSS, & JavaScript All-in-One For Dummies

Making an element transparent
A third way to hide an element is to make it transparent by setting the element’s
opacity property to 0 (or 0%):

opacity: 0;

This declaration is the same as setting visibility: hidden on the element. The
difference here is that although visibility is a toggle (that is, an element’s
visibility property is either hidden or visible), opacity can take any value
between 0.0 or 0% (completely transparent) and 1.0 or 100% (completely opaque).
I make use of this helpful fact when I talk about animating opacity in Bonus
Chapters 1 through 3.

Renovating Your Bulleted and
Numbered Lists

Bulleted lists and numbered lists (refer to Book 2, Chapter 2) are standard-issue
web page features, but that doesn’t mean they have to be boring or look the same
as every other list on the web. CSS offers a few properties that can inject a little
life into your lists.

Customizing bulleted list bullets
The basic bulleted-list bullet is a small, black circle. However, you can customize
the bullet in a couple of different ways. The simplest way is to set the list-style-
type property on the ul element, like so:

ul {
 list-style-type: type;
}

FIGURE BC4-11:
The third div is
invisible, but its

box still takes
up room in the

layout.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC21

 » type: Specifies the bullet type:

• Keyword: Use disc (the standard bullet), circle, or square. If you don’t
want any bullet, use none.

• Character(s): Type the character (or characters), surrounded by quotation
marks. For example:

list-style-type: ">";

• Unicode number: Type a backslash (\) followed by the character’s four- or
five-digit Unicode number. (There are lots of Unicode sites on the web,
such as Unicodepedia at https://www.unicodepedia.com/.) Here’s an
example (check out Figure BC4-12 and bk03ch08/example14.html):

list-style-type: "\1F449";

Alternatively, you can use a custom image as a bullet by setting the list-style-
image property on the ul element:

ul {
 list-style-image: url(image);
}

 » image: The path and filename for the image you want to use as the bullet.

FIGURE BC4-12:
Using a pointing
finger character

as a bullet.

BC22 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s an example (check out Figure BC4-13 and bk03ch08/example15.html):

list-style-image: url(images/eye-roll.png);

Customizing numbered list numbers
In most languages, the default numbers that precede each item in a numbered list
are decimal values: 1, 2, 3, and so on. However, for some variety you can customize
the number format by setting the list-style-type property on the ol element,
like so:

ol {
 list-style-type: format;
}

 » format: Use one of the keywords from the following table:

FIGURE BC4-13:
Using a custom

image as a bullet.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC23

Keyword Number format Example

decimal Standard numbers 1, 2, 3

decimal-leading-zero Standard numbers 01, 02, 03

lower-alpha Lowercase letters a, b, c

upper-alpha Uppercase letters A, B, C

lower-roman Small roman numerals i, ii, iii

upper-roman Large roman numerals I, II, III

These alternative number formats are particularly useful when you nest one num-
bered list inside another. The general nesting structure looks like this:

 First main item

 First nested item
 Second nested item
 Third nested item

etc.

If you want the nested lists to use small roman numerals, you could use a rule
such as the following to target those lists:

li > ol {
 list-style-type: lower-roman;
}

Figure BC4-14 shows an example (bk03ch08/example16.html).

BC24 HTML, CSS, & JavaScript All-in-One For Dummies

Running Feature Queries
One of the hallmarks of the current age of web development is that new CSS stan-
dards make their way into web browsers remarkably quickly. This is particularly
true when compared to 10 or 15 years ago, when new features took years to get
implemented, if they even got implemented at all (or in the right way)! So, yes,
it’s awesome that new CSS technologies make it into browsers much faster, but
they don’t get there instantly. CSS is very complex, and it understandably can still
take many months for all the major browsers to support a new feature.

So, as a modern CSS developer, you now have two things you may have to worry
about:

 » You may have to support very old web browsers that never implemented
certain CSS features.

 » You may be itching to try very new features that don’t yet have wide browser
support.

You can safely handle both scenarios by using a CSS technology called the feature
query, in which you “ask” the web browser whether it supports a particular CSS
feature. Two things can happen:

 » The browser supports the feature: Great! In this case, the browser runs the
feature-related code that you’ve provided.

FIGURE BC4-14:
Using small

Roman numerals
with a nested

numbered list.

Raising Your CSS G
am

e

BONUS CHAPTER 4 Raising Your CSS Game BC25

 » The browser doesn’t support the feature: No problem! In this case, the
browser just ignores your feature-related code.

The feature query magic comes from the @supports at-rule, which uses the
following syntax:

@supports (property: value) {
 /* CSS code to run if browser supports property: value */
}

 » property: The CSS property that you’re querying.

 » value: The value of property that you’re querying.

 » CSS code: If the web browser supports property (or, in some cases, value),
the code inside this declaration block gets executed by the browser.

Note that although you always have to supply both the property and the value
parameters, you’re querying the browser about only one or the other:

 » If you want to know only whether the browser supports a specific property,
then for the value parameter you can use anything that’s valid for that
property. For example:

@supports (initial-letter: 2)

In this case, you care only whether the browser supports the initial -letter
property (which, by the way, sets the size of the character targeted by the
::first-letter pseudo-element), so the value can be anything valid for the
property (such as an integer, in this example).

 » If you want to know only whether the browser supports a specific value of a
property, then for the value parameter you must specify the value you want
to query. For example:

@supports (display: subgrid)

In this case, you care only whether the browser supports the subgrid value of
the display property.

The way you use feature queries is to write the CSS code that you want the browser
to render if it doesn’t support the feature, and then use @supports to check for
feature support and supply some code to run if the browser has implemented the
feature. This process is known in CSS World as progressive enhancement because
you’re handling older browsers with code they can work with, and then you

BC26 HTML, CSS, & JavaScript All-in-One For Dummies

add newer code only if the browser supports it. Here’s an example (bk03ch08/
example17.html):

h2 + p::first-letter {
 color: crimson;
 font-size: 32px;
}

@supports (initial-letter: 2) {
 h2 + p::first-letter {
 initial-letter: 5;
 }
}

This code styles a ::first-letter pseudo-element and then uses @supports
to check for initial-letter support. If the browser implements that property,
initial-letter is set to 5 on the ::first-letter pseudo element; otherwise,
the browser ignores everything inside the @supports declaration block.

You can also query on multiple features. For example, to test whether the browser
supports two different features, you supply two property/value pairs, separated
by the keyword and:

@supports (property1: value1) and (property2: value2) {
 /* CSS code to run if browser supports both properties */
}

To query the browser on whether it supports one feature or another, you supply
two property/value pairs, separated by the keyword or:

@supports (property1: value1) or (property2: value2) {
 /* CSS code to run if browser supports one or both

properties */
}

For example, as I write this, Safari doesn’t support the initial-letter property,
but it does support the prefixed property -webkit-initial-letter. So, your @
supports query should test the browser for one or the other, like so (bk03ch08/
example18.html):

@supports (initial-letter: 2) or (-webkit-initial-letter: 2) {
 h2 + p::first-letter {
 -webkit-initial-letter: 5;
 initial-letter: 5;
 }
}

